Coupling of T161 and T14 phosphorylations protects cyclin B–CDK1 from premature activation
نویسندگان
چکیده
Mitosis is triggered by the abrupt dephosphorylation of inhibitory Y15 and T14 residues of cyclin B1-bound cyclin-dependent kinase (CDK)1 that is also phosphorylated at T161 in its activation loop. The sequence of events leading to the accumulation of fully phosphorylated cyclin B1-CDK1 complexes remains unclear. Two-dimensional gel electrophoresis allowed us to determine whether T14, Y15, and T161 phosphorylations occur on same CDK1 molecules and to characterize the physiological occurrence of their seven phosphorylation combinations. Intriguingly, in cyclin B1-CDK1, the activating T161 phosphorylation never occurred without the T14 phosphorylation. This strict association could not be uncoupled by a substantial reduction of T14 phosphorylation in response to Myt1 knockdown, suggesting some causal relationship. However, T14 phosphorylation was not directly required for T161 phosphorylation, because Myt1 knockdown did uncouple these phosphorylations when leptomycin B prevented cyclin B1-CDK1 complexes from accumulating in cytoplasm. The coupling mechanism therefore depended on unperturbed cyclin B1-CDK1 traffic. The unexpected observation that the activating phosphorylation of cyclin B1-CDK1 was tightly coupled to its T14 phosphorylation, but not Y15 phosphorylation, suggests a mechanism that prevents premature activation by constitutively active CDK-activating kinase. This explained the opposite effects of reduced expression of Myt1 and Wee1, with only the latter inducing catastrophic mitoses.
منابع مشابه
Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S.pombe
The activity of Cdc2 (CDK1) kinase, which coordinates cell cycle progression and DNA break repair, is blocked upon its phosphorylation at tyrosine 15 (Y15) by Wee1 kinase in the presence of DNA damage. How Cdc2 can support DNA repair whilst being inactivated by the DNA damage checkpoint remains to be explained. Human CDK1 is phosphorylated by Myt1 kinase at threonine 14 (T14) close to its ATP b...
متن کاملTwo Bistable Switches Govern M Phase Entry
The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the r...
متن کاملTerminal mitoses require negative regulation of Fzr/Cdh1 by Cyclin A, preventing premature degradation of mitotic cyclins and String/Cdc25.
Cyclin A expression is only required for particular cell divisions during Drosophila embryogenesis. In the epidermis, Cyclin A is strictly required for progression through mitosis 16 in cells that become post-mitotic after this division. By contrast, Cyclin A is not absolutely required in epidermal cells that are developmentally programmed for continuation of cell cycle progression after mitosi...
متن کاملFine Tuning the Cell Cycle: Activation of the Cdk1 Inhibitory Phosphorylation Pathway during Mitotic Exit Running title: Inhibition of Cdk1 in G1 by phosphorylation
Inactivation of Cdk1 promotes exit from mitosis and establishes G1. Proteolysis of cyclin B is the major known mechanism that turns off Cdk1 during mitotic exit. Here we show that mitotic exit also activates pathways that catalyze inhibitory phosphorylation of Cdk1, a mechanism previously known to repress Cdk1 only during S and G2 phases of the cell cycle. We present evidence that downregulatio...
متن کاملFine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit.
Inactivation of cyclin-dependent kinase (Cdk) 1 promotes exit from mitosis and establishes G1. Proteolysis of cyclin B is the major known mechanism that turns off Cdk1 during mitotic exit. Here, we show that mitotic exit also activates pathways that catalyze inhibitory phosphorylation of Cdk1, a mechanism previously known to repress Cdk1 only during S and G2 phases of the cell cycle. We present...
متن کامل